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THE GROOVE GUIDE, A LOW-LOSS

WAVEGUIDE FOR MILLIMETER WAVES

by

F. J. Tischer

Summary: JA new waveguide for the low-loss transmission of millimeter waves

is presented. The guide consists of two parallel conducting walls with grooves

in the central region of the guide cross-section. The grooves run along the

guide in the direction of the wave propagation. It is shown that the wave-

guide, if excited in the TE-wave mode, has similar properties as the H-guide,

which contains a dielectric slab between the conducting walls in the center.

The new guide is characterized by an exponential transverse decrease of the

field distributions in direction from the center and by low attenuation.

Theoretical considerations dealing with the field distribution and the data of

the guide are presented.

January 3, 1963
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Introduction

It can be shown that a waveguide which consists of two parallel con-

ducting walls has low attenuation if excited by TE-waves. For this wave

mode, the electric-field vector is parallel to the conducting walls. The

attenuation has similar characteristics as that of the circular waveguide

excited by TE0 1-waves, namely, it is low and decreases with increasing

frequency.

The H-guide, which consists of two parallel conducting walls and a

centrally located transverse dielectric slab running along the guide in the

direction of the wave propagation, has similar low-loss properties[1,12.

In this guide, the direction of the field vectors and the field distributions,

In the region of maximum energy transport, are equal to those in the parallel-

wall guide. The main difference consists in an exponential decrease of the

field Intensities in the H-guide in direction from the center parallel to the

walls caused by the centrally located dielectric slab. The dielectric losses

yield a major contribution to the attenuation of this guide.

In a new waveguide, which basically also consists of two conducting

walls facing each other, grooves in these walls located in the central

region of the guide cross-section and running along the guide have a similar

effect as the dielectric slab In the H-guide. The grooves cause the field dis-

tribution to decrease exponentially from the center, Since no dielectrics are

used in this guide, the dielectric lasses are eliminated with a corresponding

reduction of the attenuation. Basic theoretical consideration of this new

wavegulde structure are the topic of this paper.
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A method of applying conformal mapping in a general theory of the

groove guide, as the new waveguide may be called, is presented first. The

application of this method to a rectangular cross-section of the groove is

considered next. Finally, a procedure for obtaining approximate values of

the cutoff and guided wavelengths in the groove guide is shown.

Deformed-Wall Guide

Let us first consider generally the effect of deformations of the wall

surfaces facing each other in a parallel-wall waveguide as indicated in Fig.

la. The deformations have the form of grooves. In these considerations, we

assume orthogonal cylindrical coordinates. The longitudinal coordinate points

in the direction of wave propagation. The transverse coordinates are chosen

such that the walls represent surfaces of constant magnitudes of one of the

cross-sectional coordinates. We compare the field intensities for degenerate

TE-waves in this guide which is air-filled with those in a true parallel-wall

guide as shown in Fig. lb. The medium between the conducting walls of this

latter guide is nonisotropic and nonuniform over the cross-section.

We write Maxwell's equations:

9x •-jrCo/4 ,• (1)

i JC E (2)

0) (3)

. 0) (4)

where B /A,. H (5)

a• I a Oe. (6)
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Developing Maxwell's equations for the defornmed-wall air-filled guide in the

coordinate system for which a length ,:luin.ant is given n.,)

ds2  dx 2 i (hd.,) + (hdw) 2  (7)

yields the following equation system:

[ C h v) ]:

3H ak-l CChN )]*E 'k (9)

' ~ hv Zf-4 ]:C'oh E ) (10)
CW E)v X•.

'(hE•) X - v(

av Cv ae

ED _ _ _ (14)

h 2aDx a)(hEv) + (hE~w) (4

C)K + + 0 (15)
C) D v aW
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The corresponding equation system for the dielectric-filled parallel-wall

guide is:

H1  •L- jc E, (16)

S(17)

_ _ ' j CE. E (18)
ax aV

-E 3 H (19)

3z EX D F. jpa H• (20)

aE aE,
S ) x "57 (21)

'- " +41 + 0 (22)

) it-, ___ -O (23)

Comparison of these two equation systems shows interesting relation-

ships. If we introduce the following identities, we can transform one system

into the other one. The identities are:

Hx = Hx, Ex = Ex,

hHv = Hy , hE = Ey,

hHw = Hz , hEw = Ez



[A] A'W C 3 (24)

The relationships show that the parallel-wall guide according to Fig. lb

filled with a nonisotropic and transversely nonuniform medium is equivalent

to the deformed-wall guide according to Fig. Ia. Knowing the field distribu-

tions and properties of the former, we can compute the data of the latter

structure by the use of the relationships described by Eqs. (24).

We note that the properties of the medium in the parallel-wall guide

are described by a tensor permeabilityI/K and a tensor permittivity I I given

by

a (901z)4. 0 0

I~4l0 /A4' 0
0 0 ýA (25)

and ah z)Z o 0 o

E0 0 (26)

0 0 to
The equations show that the longitudinal components (with respect to the guide)

of the relative material constants JAV, and 6P. are proportional to h2 which is

a function of the cross-sectional position. The relative material constants

IA and are given by /•=u ov4 ,,, aind 6 L . respectively.

Let us next represent the cross-sectional coordinates for the two guides
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shown in Fig. 1 in complex planes [4,5] where

U = v + jw , (27)

and X y + jz . (28)

The coordinates are interrelated by a complex function.

U = f (X). (29)

We postulate that U is a conformal image of X. We write

dU/dX = A exp i Gý. (30)

Using these notations, h becomes

h - A = IdU/dXI. (31)

The longitudinal relative permittivivy and permeability are hence equal

to the scale factor [Eq. (31)• of the conformal transformations of the coordi-

nates of the two systems.

A Method for Considering the Groove-Guide

The derived relationships indicate the possibility to compute the field

distributions and properties of the guide with arbitrarily deformed walls as

shown in Fig. la by considering a parallel-wall guide filled with a non-

isotropic and nonuniform medium as an intermediate step. The relationships

suggest the following procedure:

First, we present the cross-section of the deformed-wall guide in the

complex plane and determine the complex function [4,5] which transforms

the cross-section into two straight parallel lines. If the transformation func-

tion is analytic, the Cauchy-Riemann equations are satisfied, and the trans-

formation represents a conformal mapping. The scale factor h(yz) of the
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conformal mapping yields the longitudinal components of 1 he nonisotropic

relative permittivity and permeability [Eqs. (25) and (26.)] of the medium

which fills the hypothetical parallel-wall guide to give equal properties. We

compute next the field distribution within arid the properties of the parallel-

wall guide. The basic properties, such as the exponential decrease of the

field intensities in direction from the center, the cutoff wavelength 'Xc., the

guided wavelength A9 , etc., are independent of the transformation and the

same for both guides. The magnitudes of the field intensities are interrelated

by the Eqs. (24).

For the determination of the scale factor h(yz) and of the complex

transformation function f(X), mathematical procedures shown in the following

section are suitable. This section shows the application of the Schwartz-

Christoffel theorem [4,5] for the rigorous computation of the transformation

function. Graphical methods and experimental electrolytic-tank procedures

for field mapping can be applied also; they yield directly the scale factor h

without the necessity of determining the transformation function [6].

Rectangular Cross-Section of the Groove

The guide with a rectangular cross-section of the groove represents a

typical, practical example of the new guide. This particular cross-section is

interesting since the transformation function and the scale factor can be deter-

mined rigorously by conformal mapping. The cross-section of the guide has

the form and the dimensions shown in Fig. 2. The total height of the guide is

H, and the distance between the parallel walls is p. The width and depth of
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the rectangular grooves are A hand Ap, respectively, The cross-section as

shown in Fig. 2, plotted in the complex plane, can be transformed by a com-

plex function into two straight parallel lines. The Schwartz-Christoffel

theorem is applied for finding this function [4,5].

Since the cross-section of the guide is symmetrical, we consider one

quadrant only and place it on the complex U-plane with v and w as coordi-

nates. The conditions are indicated in Fig. 3a. The contour of the quadrant

of the guide with infinite walls follows the lines from 0 to A, B, C, D, E,

and back to 0.- The point D is at infinity. This contour has to be transformed

into a rectangle as shown in Fig. 3 c. The transformed cross-section is plotted

in the complex X plane where X = y + jz.

For simplifying the transformation procedure, a complex T-plane is

introduced as an intermediate step [Fig. 3b]. The coordinates are r and s;

the complex function becomes T = r + is. This assumption allows mapping

the complex T-plane onto the U- and X-planes. Elimination of T yields the

transformation function between U and X. In the T-plane, the contour repre-

senting the considered quadrant of the guide is found on the real axis with the

images of the points 0 and A to E denoted by the same letters. The connecting

line between the points D in the T-plane is a circle with infinite radius.

Using the Schwartz-Christoffel theorem, we find for the transformations

the following relations:

dU/dT = K1 (T - r2)k (1 -W (T - ri)-ý, (32)

dX/dT = K2(T + 1 (1" -(T "IT (33)

dU/dX = (T - r2)# (T - rl)". (34)
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Evaluation of Eq. (33) yields

T = - cos (27 X/p). (35)

Substitution in Eq. (34) and integration gives for the transformation function

U (cos 21rX/p + r2 )½ (cos 2irX/p + rl)'¶ K3 . (36)

The scale factor is obtained from Eq. (34). It becomes~after separating

X in real and imaginary parts,

h2= (cos4coshf + r2 )2 + (sin04IsinhV )2

(cos ýcosh'f + rl)? + (sin (sinh t) 2

where 2wy/p and T= 22rz/p.

The determination of the constants r2 and r1 is rather tedious and is omitted

here. It should be noted that the computation leads to elliptical integrals for

which tables can be found in the literature [7]. A plot of the constants r2 and

r1 versus Ap/p and Ah/p is shown in Fig. 4. With the constants known, we

can find h2 and consequently the longitudinally components of the relative

permittivity and permeability according to Eqs. (25) and (26). Fig. 5 shows

on example of a typical distribution of these material constants in the yz-plane

where the density of shading represents a measure of their magnitude.

We observe that the medium constants are increased in the central

region of the cross-section above the free space value which is 1. The increase

becomes considerably near the images of the points A and B, which denote the

bottom of the groove. A decrease of the constants occurs near the image of

the corner point C which is located at the rim of the rectangular groove

Fig. 3a].

The next step in considering the groove guide consists in the computation



in the field distribution within the guide with the cross-section shown in Fig.

lb filled with a medium with medium constants by h 2 with a distribution as

indicated in Fig. 5. Methods for the computation of electromagnetic fields

in nonuniform media can be used far this purpose. Procedures are described

in the literature [4, 8, 9] . A special treatment of this problem is in prepa-

ration. Knowing the field distribution, we can compute the general data of

parallel-wall guide and apply the results to the groove guide.

An alternative, simplified method for estimates of the cutoff and guided

wavelengths applying the results of computations of the data of the H-guide

is shown in the next section.

A Rough Estimate of the Cutoff and Guided Wavelengths

We can obtain a rough estimate of the cutoff and guided wavelengths

of the rectangular groove guide without carrying out the computation of the

field distribution by using the results of the following approximate considera-

tion. We substitute for the central section of the air-filled guide which

includes the two rectangular grooves a dielectric-filled section of a width

equal to that of the rest of the guide. The relative permittivity of the sub-

stituted section is chosen uniform and has such a value that the cutoff and

guided wavelengths equal those of the air-filled section which includes the

grooves. Fig. 6 shows on the right-hand side the substituted section filled

with the uniform and isotropic dielectric.

For finding the relative permittivity of the dielectric, we have to

equate the cutoff wavelengths of both guide sections between A and A' as
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indicated in Fig. 6. We find

Ac2 = [2(p + &p)] 2 = Er( 2p) 2, (38)

which yields

E, (1 + Ap/p)2  (39)

and Er =A + 2Ap/p

if Ap is a fraction of the width p (Ap(( p). Knowing the permittivity of

the dielectric slab, we use relations derived for the cutoff and guided wave-

lengths of the H-guide for the determination of these quantities of the groove

guide. The relations involved are [1,2]:

k2 4. k a , (Er- 1)(2'r/Ao) 2 , (40)

tcn (kdAh/2) - Erkcj/kdi (41)

where ka and kd are constants, Aois the same free-space wavelength cor-

responding to the frequency of the transmitted signals, and A.1 is the wave-

length within the guide. The cutoff wavelengths Ar is given by:

I/ - (A.2 (43)

Evaluation of Eqs. (40) to (43), usually performed graphically, yields AC

and As which is the same for both guides. It should be noted that the con-

stant kd represents the constant for the exponential decrease of the field in-

tensities in direction parallel to the walls and in direction from the centrally

located dielectric slab. The value of kd is approximately the same in the case

of the groove guide.
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Conclusion

It is shown that a deformed-wall guide with grooves in the central region

of the cross-section is equivalent to a parallel-wall guide with a dielectric

contained in the central section. The guide has, consequently, similar pro-

perties to those of an H-guide. It is characterized by low attenuation which

decreases with increasing frequency and by an exponentially decreasing field

distribution in the direction from the center of the cross-section parallel to

the walls. Since the guide contains no dielectric, it is expected to have a

lower attenuation than the H-guide. Besides the application for long-distance

transmission and as a delay line, the simple structure makes the guide suitable

for the design of millimeter wave circuitry and of circuit elements.
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Figures

Fig. 1 Parallel-wall waveguide.

a. Deformed-wall guide.
b. Parallel-wall guide with nonuniform and nonisotropic medium.

Fig. 2. Cross-section of the rectangular-groove guide.

Fig. 3 Quadrant of guide cross-section before and after transformation in
the complex plane.

a. Original cross-section.
b. & c. Cross-sections after transformation.

Fig. 4 Constants r and r1 (Eq. (38) versus relative groove width Ah/p and
depth Ap/p.

Fig. 5 Typical distribution of the relative permittivity and permeability
(Eqs. (25) and (26) of the medium in the parallel-wall guide.)

Fig. 6 Replacement of the central guide section by a dielectric-filled
section.
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